Conformation of the Group II intron branch site in solution.

نویسندگان

  • Jörg C Schlatterer
  • Samuel H Crayton
  • Nancy L Greenbaum
چکیده

Group II introns are multidomain ribozymes that catalyze their own removal from pre-mRNA. The nucleophile for the first cleavage step is the 2'OH of a specific adenosine within domain 6 (D6), called the branch site. Mechanistic parallels and limited secondary structural similarity with the eukaryotic spliceosome lead many to speculate that the two systems have a common ancestry. We have elucidated structural features of the branch site region and the importance of the internal loop to branch site conformation within D6 of the ai5gamma Group II intron by NMR and fluorescence spectroscopy. Fluorescence experiments in which 2-aminopurine was substituted for the branch site adenosine suggest that the branch site base is exposed to solvent and that this position is enhanced by Mg2+ or Ca2+. Upfield NMR chemical shifts of imino protons of the two uridine residues flanking the branch site adenosine, and an n --> n + 2 NOE between them, suggest a stacked intrahelical conformation of the two uridines. In contrast, results of NMR and 2-aminopurine fluorescence spectra of a mutated D6 from which the internal loop had been deleted suggest a less exposed position of the branch site adenosine, which is likely to form a G-A base pair with the opposing 3'G. These findings describe a model in which the branch site adenosine of D6 is in an extrahelical position, surrounded by two intrahelical bases. The internal loop and divalent metal ions facilitate this motif.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mg Binding Site is Located in Close Neighborhood to the Stacked Branch-Adenosine in Domain 6 of a Self-Splicing Group II Intron Ribozyme

Group II intron self-splicing is essential for correct expression of organellar genes in plants, fungi, and yeast, as well as of bacterial genes. Self-excision of these autocatalytic introns from the primary RNA transcript is achieved in a two-step mechanism apparently analogous to the one of the eukaryotic spliceosome. The 2’-OH of a conserved adenosine (the branch point) located within domain...

متن کامل

Structure et réarrangements conformationnels au cours de l’épissage du composant ribozyme d’un intron de groupe II / Structure and conformational rearrangements during splicing of the ribozyme component of group II introns

Group II introns are a class of RNAs best known for their ribozymecatalyzed, self-splicing reaction. Under certain conditions, the introns can excise themselves from precursor mRNAs and ligate together their flanking exons, without the aid of proteins. Group II introns generally excise from pre-mRNA as a lariat, like the one formed by spliceosomal introns, similarities in the splicing mechanism...

متن کامل

Control of branch-site choice by a group II intron.

The branch site of group II introns is typically a bulged adenosine near the 3'-end of intron domain 6. The branch site is chosen with extraordinarily high fidelity, even when the adenosine is mutated to other bases or if the typically bulged adenosine is paired. Given these facts, it has been difficult to discern the mechanism by which the proper branch site is chosen. In order to dissect the ...

متن کامل

Structural insights into group II intron catalysis and branch-site selection.

Group II self-splicing introns catalyze autoexcision from precursor RNA transcripts by a mechanism strikingly similar to that of the spliceosome, an RNA-protein assembly responsible for splicing together the protein-coding parts of most eukaryotic pre-mRNAs. Splicing in both cases initiates via nucleophilic attack at the 5' splice site by the 2' OH of a conserved intron adenosine residue, creat...

متن کامل

Exon-Intron Interaction

The reaction mechanism for self-splicing introns requires the existence of a 5' exon binding site on the intron. Experimental evidence is now presented consistent with the existence of such a binding site by demonstrating efficient and accurate trans-self-splicing of a yeast mitochondrial group II intron. Partial and complete transsplicing reactions take place in the absence of branch formation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 128 12  شماره 

صفحات  -

تاریخ انتشار 2006